Distribution concepts in Space Applications

Jean-François Kaufeler iTEC08 Darmstadt, 7. November 2008

Presentation content

- The Beginning
- Space Systems Today
- The Big Picture of the Future

The Beginning

- Sputnik 1
 - Launch: Oct. 1957, ~80Kg
 - » « bip-bip » on 20 and 40 MHz

Sputnik 2

- Launch: Nov. 1957, ~500Kg
- One instrument radiation sensor
- Analogue modulation
- No on-board recording

Explorer 1

- Launch: Feb. 1958, ~14Kg
- Several instruments
- Analogue modulation
- 17 reception stations

Distribution Concepts in Space

Space System

Space System

- Is by nature a distributed system
- Very remote locations (terrestrially and in space)
- Exchange of data everywhere
- Data handled in different distributed applications
- Today Space Systems are consumers of advanced IT solutions in
 - Networks
 - Distributed applications

The Space Segment

- The general architecture of a satellite is divided into two main parts
 - > The platform, also called the service module
 - > The payload, or payload module

The platform provides the main satellite support functions, such as

- Management of housekeeping data
- Telemetry downlinks, command uplinks and tracking
- Power generation and storage
- Control of attitude (orientation in space) and orbit (position in space)
- Propulsion

The payload, or payload module, is mounted on the service module

- The instruments
- The data management and communications (BUS)
- > The electrical distribution, solid state memory

Distribution Concepts in Space

The Space Segment

- All modern spacecraft carry digital computers
 - **For the platform management**
 - In the various instruments
- ESA's Envisat Earth observation satellite
 - Some 50 processors

International Space Station (ISS)

- SW upgrades are using IP based internetworking internet protocols
- Onboard LANs to exchange data onboard
- VOIP based phone calls between ISS and ground, e-mailing

The Ground Segment

ESA Tracking Station Network: ESTRACK

ESA Mission Control System

Latest generation based on

- Distributed architecture: Server Client
- SUN / Solaris and Intel / Linux
- Systematic migration towards Linux for both clients and servers

But as a consequence

- Proliferation of Clients (1400 Workstations)
- Fast evolution of HW and OS impacts application software
- Difficult and expensive change management

Solution

- Virtualisation
- Simple terminals / devices (not workstations) in operations rooms
- Distributed operations (tele-presence)

The Future

International cooperation on exploration missions

- Only possible if based on standards
 - Communication protocols
 - > Data exchange standards
 - Standard service at interface points
 - Sharing / accessing Space infrastructures

Reuse of IT solutions

- IP in Space, in limited areas of space (e.g. lunar)
- > Disruption Tolerant Networking (DTN) for larger distances (e.g. Mars exploration)

NASA: Communication Architecture in ~2025

Questions & Answers

Thanks for your attention

Distribution Concepts in Space